Skip to content

Property Predictor (preview)

The Property Predictor is an interface to predict the values of desired properties for specified glass compositions.

It allows the user to select the appropriate method (model) for performing the predictions.

property-predictor-1.png property-predictor-1-dark.png

Models

Currently, only GlassNet is available.

GlassNet

GlassNet , a multitask model deep neural network model developed by Daniel R. Cassar that is capable of predicting 85 different properties.

property-predictor-4.png property-predictor-4-dark.png

Please cite the following paper if you're using this model in your research:

Cassar, D.R. (2023). GlassNet: A multitask deep neural network for predicting many glass properties. Ceramics International 49, 36013–36024. 10.1016/j.ceramint.2023.08.281.

Note

Some properties predicted by GlassNet use different units (and scaling) than SciGlass. Check the Property section below for details.

Compositions

You can specify up to 15 component names and the corresponding values as input for the prediction.

An autocomplete dropdown list will be shown when you click on the component input fields:

property-predictor-2.png property-predictor-2-dark.png

Note that the names in the dropdown list are from the SciGlass database and should cover most common components.

If the name you typed does not match in the database, it may still be used as input as long as it is valid.

property-predictor-3.png property-predictor-3-dark.png

Warning

When using the GlassNet model, only the elements between atomic numbers 1 and 83 (hydrogen and bismuth included) were considered, excluding promethium and the noble gases.

If GlassNet cannot handle the names, a warning message will be shown.

Kind of %

Specify the kind of percent for the value fields. The following options are available:

  1. Mol% (Molar %)
  2. Wt% (Weight %)

The default is in Mol%.

Paste (coming soon)

Paste the composition copied from the glass in the Detail Card (Table view)

Clear

You can click on the Clear button to clear all component and value fields.

Predict

Click on the Predict button to make a prediction with the entered glass compositions and the chosen model.

Property

All 85 properties (with scaling and units) available in GlassNet are shown below extracted from the paper in comparison to SciGlass.

GlassNet uses the International System of Units (SI) unit by default. In SciGlass Next, we still use the default units used in SciGlass for consistency.

Property
(SciGlass Next)
Unit Property
(GlassNet)
Unit
T1 (logη=1) °C 𝑇0 K
T2 (logη=2) °C 𝑇1 K
T3 (logη=3) °C 𝑇2 K
T4 (logη=4) °C 𝑇3 K
T5 (logη=5) °C 𝑇4 K
T6 (logη=6) °C 𝑇5 K
T7 (logη=7) °C 𝑇6 K
T8 (logη=8) °C 𝑇7 K
T9 (logη=9) °C 𝑇8 K
T10 (logη=10) °C 𝑇9 K
T11 (logη=11) °C 𝑇10 K
T12 (logη=12) °C 𝑇11 K
T13 (logη=13) °C 𝑇12 K
logη at 500°C P log10(𝜂(773K)) Pa.s
logη at 600°C P log10(𝜂(873K)) Pa.s
logη at 700°C P log10(𝜂(973K)) Pa.s
logη at 800°C P log10(𝜂(1073K)) Pa.s
logη at 900°C P log10(𝜂(1173K)) Pa.s
logη at 1000°C P log10(𝜂(1273K)) Pa.s
logη at 1100°C P log10(𝜂(1373K)) Pa.s
logη at 1200°C P log10(𝜂(1473K)) Pa.s
logη at 1300°C P log10(𝜂(1573K)) Pa.s
logη at 1400°C P log10(𝜂(1673K)) Pa.s
logη at 1500°C P log10(𝜂(1773K)) Pa.s
logη at 1600°C P log10(𝜂(1873K)) Pa.s
logη at 1800°C P log10(𝜂(2073K)) Pa.s
logη at 2000°C P log10(𝜂(2273K)) Pa.s
logη at 2200°C P log10(𝜂(2473K)) Pa.s
Tg °C 𝑇𝑔 K
Mg °C 𝑇dil K
Littleton point °C 𝑇Lit K
Annealing point °C 𝑇ann K
Strain point °C 𝑇strain K
Softening point °C 𝑇soft K
logρ at 20°C Ohm·cm log10(ρ(273K)) log10(ρ(293K)) Ohm·m
logρ at 100°C Ohm·cm log10(𝜌(373K)) Ohm·m
logρ at 150°C Ohm·cm log10(𝜌(423K)) Ohm·m
logρ at 300°C Ohm·cm log10(𝜌(573K)) Ohm·m
logρ at 800°C Ohm·cm log10(𝜌(1073K)) Ohm·m
logρ at 1000°C Ohm·cm log10(𝜌(1273K)) Ohm·m
logρ at 1200°C Ohm·cm log10(𝜌(1473K)) Ohm·m
logρ at 1400°C Ohm·cm log10(𝜌(1673K)) Ohm·m
TK-100 °C 𝑇𝜌=106𝛺.𝑚 K
ε' (~20°C, ~1MHz) - 𝜀 -
Tanδ *1E4 - log10(tan(𝛿)) -
α at 55 ± 10°C *1E7 K-1 log10(𝛼𝐿(328K)) K-1
α at 100 ± 10°C *1E7 K-1 log10(𝛼𝐿(373K)) K-1
α at 160 ± 10°C *1E7 K-1 log10(𝛼𝐿(433K)) K-1
α at 210 ± 10°C *1E7 K-1 log10(𝛼𝐿(483K)) K-1
α at 350 ± 10°C *1E7 K-1 log10(𝛼𝐿(623K)) K-1
α at T < Tg *1E7 K-1 log10(𝛼𝐿(𝑇 < 𝑇𝑔)) K-1
Density at 20°C g/cm3 𝑑(293K) g/cm3
Density at 800°C g/cm3 𝑑(1073K) g/cm3
Density at 1000°C g/cm3 𝑑(1273K) g/cm3
Density at 1200°C g/cm3 𝑑(1473K) g/cm3
Density at 1400°C g/cm3 𝑑(1673K) g/cm3
nd at 20°C - 𝑛𝐷 -
n at 0.6 < λ < 1µm (20°C) - 𝑛 (low) -
n at λ > 1µm (20°C) - 𝑛 (high) -
Mean dispersion *1E4 - log10(𝑛𝐹 − 𝑛𝐶) -
Abbe's number - 𝑉𝐷 -
Thermal shock resist. K 𝛥𝑇 K
Young's modulus GPa 𝐸 GPa
Shear modulus GPa 𝐺 GPa
Poisson's ratio - 𝜈 -
Microhardness GPa 𝐻 GPa
Tliq °C 𝑇liq K
Tm °C 𝑇melt K
Thermal conductivity W/(m·K) 𝜅 W/(m·K)
CP at 20°C J/(kg·K) 𝐶𝑝(293K) J/(kg·K)
CP at 200°C J/(kg·K) 𝐶𝑝(473K) J/(kg·K)
CP at 400°C J/(kg·K) 𝐶𝑝(673K) J/(kg·K)
CP at 800°C J/(kg·K) 𝐶𝑝(1073K) J/(kg·K)
CP at 1000°C J/(kg·K) 𝐶𝑝(1273K) J/(kg·K)
CP at 1200°C J/(kg·K) 𝐶𝑝(1473K) J/(kg·K)
CP at 1400°C J/(kg·K) 𝐶𝑝(163K) J/(kg·K)
σ at T > Tg mN/m 𝛾(𝑇 > 𝑇𝑔) J/m2
σ at 900°C mN/m 𝛾(1173K) J/m2
σ at 1200°C mN/m 𝛾(1473K) J/m2
σ at 1300°C mN/m 𝛾(1573K) J/m2
σ at 1400°C mN/m 𝛾(1673K) J/m2
Tmax °C 𝑇max(𝑈) K
Vmax cm/s log10(𝑈max) m/s
Tc °C 𝑇𝑐 K
Tx °C 𝑇𝑥 K

Note

All logarithm is base 10.

Property Filter

If you are only interested in some properties, you can switch the visibility with this function on the right-hand side.

property-predictor-5.png property-predictor-5-dark.png

For example, with only Density group visible: property-predictor-6.png property-predictor-6-dark.png

Unit Converter (coming soon)

You can use this function on the right-hand side to switch to different units for different properties.

Example

With SiO2=70, B2O3=30, Na2O=10 in mol%

property-predictor-7.png property-predictor-7-dark.png

With SiO2=70, B2O3=30, Na2O=10 in wt%

property-predictor-8.png property-predictor-8-dark.png

Note

The composition values are rescaled in GlassNet, i.e. the total sum does not have to be 100.

If in the example SiO2=0.7, B2O3=0.3, Na2O=0.1, the results will be the same.